skip to main content


Search for: All records

Creators/Authors contains: "Jorgensen, Erik M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By engineering the point-spread function (PSF) of single molecules, different fluorophore species can be imaged simultaneously and distinguished by their unique PSF patterns. Here, we insert a silicon-dioxide phase plate at the Fourier plane of the detection path of a wide-field fluorescence microscope to produce distinguishable PSFs (X-PSFs) at different wavelengths. We demonstrate that the resulting PSFs can be localized spatially and spectrally using a maximum-likelihood estimation algorithm and can be utilized for hyper-spectral super-resolution microscopy of biological samples. We produced superresolution images of fixed U2OS cells using X-PSFs for dSTORM imaging with simultaneous illumination of up to three fluorophore species. The species were distinguished only by the PSF pattern. We achieved ∼21-nm lateral localization precision (FWHM) and ∼17-nm axial precision (FWHM) with an average of 1,800 - 3,500 photons per PSF and a background as high as 130 - 400 photons per pixel. The modified PSF distinguished fluorescent probes with ∼80 nm separation between spectral peaks.

     
    more » « less
  2. Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release. 
    more » « less
  3. The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for Caenorhabditis elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the µ-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2.

     
    more » « less